If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-30=0
a = 3; b = -4; c = -30;
Δ = b2-4ac
Δ = -42-4·3·(-30)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{94}}{2*3}=\frac{4-2\sqrt{94}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{94}}{2*3}=\frac{4+2\sqrt{94}}{6} $
| c=64/121 | | 18(-5p+2)= | | 125^x+45^x=2×27^x | | -1/2x^2+2+2=0 | | 36=17+yy= | | c2=36/169 | | F(x)=x^2+12x-69 | | 3x+4x-1=20 | | n/8=11/40 | | 5y-12=2y+3 | | x^2-9x-736=0 | | -16x^2+288x+6=0 | | 1q=24 | | x/3+x/8=22 | | 4x-2(x+1)=5+3(3-3x) | | 112-7(x-1)=84 | | 7(1-2f)+5=11f | | 2-1/2n=3n+16 | | 1+n=-3(1-n) | | 3/2x=12-5/2x | | -13+3x=17 | | (12x+-5)+-11)=0 | | -38(x+4)= | | -5+3n=13 | | (3n+24)+(4n+16)=180 | | 66-5=3b+6 | | 8(4x)-9(2x)+1=0 | | 25p=-125 | | 2x2+8x+8=0 | | −8w−6=−(8w+6) | | 10=x/3+8 | | x*2-36=8 |